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Experiments with a rotating source-sink annulus have shown that hot-wire 
probe supports can give rise to low-wavenumber, azimuthally propagating 
disturbances. These have been observed by a number of workers, and inter- 
preted as Ekman boundary-layer instabilities and inertial eigenmodes of the 
annulus. The waves are associated with the wake downstream from the probe 
support; and a simplified model of the wake instability in cylindrical co- 
ordinates is presented. This model has a number of features in common with 
the observed disturbances. Extensive data have been obtained on wave 
frequencies and magnitudes, wavenumbers and phase relationships, and on 
wake structure and onset of the disturbances. The results of hot-wire anem- 
ometry experiments in an annulus are discussed in light of the present findings. It 
is concluded that the wave 'motions interpreted as type-I1 (class-A) Ekman 
instabilities and inertial eigenmodes by Tatro & Mollo-Christensen (1967) were 
probe-associated disturbances, while the boundary-layer waves observed by 
Caldwell& Van Atta (1970) were type-I1 disturbances, similar to those observed 
by Faller & Kaylor (1966a) using dye techniques. 

1. Introduction 
The rotating source-sink annulus has been used to study a number of flow 

problems; one area of research has been investigation of the stability of a 
laminar Ekman boundary layer. Unstable modes of the Ekman layer were first 
observed by Faller (1963) and Faller & Kaylor ( 1 9 6 6 ~ )  using a water-filled 
annulus with dye techniques, and it was found that two types of instability 
could occur. The type-I1 (class-A) instability occurs at  a Reynolds number 
(Re = VS/v, where V is the mean velocity, 6 the Ekman depth and v kinematic 
viscosity) of approximately 60, with wavelengths of order 256 and phase speeds 
of order gV. The type-I (class-B) waves occur a t  Re- 125, with wavelengths of 
order 108, and are either stationary or slowly moving. 

The theoretical problem of Ekman-layer stability has been studied by 
Bacilon (1965), Lilly (1966) and Faller & Kaylor (1966b). Lilly used linear 
perturbation analysis and solved numerically the resulting eigenvalue problem ; 

t Present address : Geophysical Fluid Dynamics Program, Princeton University, P.O. 
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Faller & Kaylor (1966 b )  integrated numerically the nonlinear time-dependent 
equations. Both Lilly and Faller & Kaylor (1966 b )  found two types of instabil- 
ities with properties similar to the disturbances observed in the experiments of 
Faller (1963) and Faller & Kaylor ( 1 9 6 6 ~ ) .  From the theoretical work, it was 
found that the type-I instability was associated with the inflexion point in the 
Ekman spiral, and was an inviscid instability. The mechanism for the type-11 
waves was realized by Lilly to be one where kinetic energy was released from 
an ordinarily stable velocity configuration, linear shear, by an ordinarily 
stabilizing influence, rotation. Such a mechanism was anticipated by Burgers 
(1953), who introduced energy conserving terms, analogous to the Coriolis 
force, into a set of equations modelling turbulent shear flow. 

Tatro & Mollo-Christensen (1967) reported observing both classes of instability 
in a rotating source-sink annulus with air as the working medium and instru- 
mented with hot-wire probes. They also reported observing interior wave 
motions, and interpreted these as inertial modes of the annulus excited by 
Ekman-layer instabilities. The investigation of these interior wave motions 
was continued by Green (1968), Green & Mollo-Christensen (1970) and Ingram 
(1971), who gave the same interpretation as Tatro & Mollo-Christensen. Cald- 
well & Van Atta (1970) also used a rotating source-sink annulus with air and 
hot-wire anemometry, and observed disturbances with properties similar to 
those predicted for the type-I1 instability. 

The present work is the outcome of an attempt to study the generation of 
inertial waves by Ekman-layer instabilities. It was found that the disturbing 
effects produced by hot-wire probe supports (rods typically 2-3 mm diameter) 
were substantial. Azimuthally travelling disturbances can occur owing to the 
presence of a disturbing rod (or probe support) ; and the properties of these are 
similar to the reported properties of the interior waves observed by Tatro & 
Mollo-Christensen, Green and Ingram. The disturbances are associated with the 
wake produced by the rod or probe support, and have frequencies of order the 
rotation frequency. The waves are not a local phenomena and can typically be 
detected throughout the annulus. The disturbances have integer azimuthal 
wavenumbers m, which range from about 2 to 7, depending on the radial 
position of the disturbing rod rR. Low values of m are associated with small rR 
and high values of m with large rR. These disturbances are very similar to the 
wave motions of detached shear layers studied by Hide & Titman (1967). The 
rod-induced waves also have properties similar to those reported for the 
disturbance labelled type-I1 instability by Tatro & Mollo-Christensen and 
Tatro (1966). 

Disturbance effects due to probes have also been observed by Fultz & Kaiser 
(1971), in experiments using a differentially-heated, rotating annulus. Oscil- 
lations associated with the probe were observed, but not dealt with in detail, 
as their work concentrated on the effect of the probes on mean velocities. The 
oscillations did appear to have low wavenumbers in the interior and frequencies 
of the order of the rotation frequency (Fultz, personal communication). 
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FIUURE 1. Schematic of apparatus used in source-sink annulus experiment. A Twelve 
mercury slip rings. B To Disa units. C Traverser. D Gooseneck support. E Non-disturbing 
probes. P Reticulated polyurethane foam. B Bearing support. H To batiie and vacuum 
system. I Light. J Perforated disk. K Photo-diode. L Tachometer. M D.c. motor. N To 
speed control. 0, Flowmeter. 

2. Experimental apparatus and techniques 
The apparatus employed in this experiment is pictured in figure 1 ; i t  is similar 

in many respects to that designed by Green (1968). Polished aluminium plates 
60.96 cm in diameter were separated by 10.48 cm by a central hub, which was 
perforated and covered with polyurethane foam; the radius of the inner wall 
was 11.48 cm. The outer wall was also polyurethane foam, which was very 
effective in spinning up the incoming air. A variable speed d.c. motor rotated 
the annulus via a belt drive and rotation speed was monitored with a tachometer 
and with a perforated disk, light source, photodiode and electronic counter. 
A vacuum pump was used to draw air through the annulus ; and a stagnation 
chamber isolated the annulus from upstream disturbances. The volumetric 
flow rates were measured using a rotameter flowmeter with an accuracy of 
typically f 5 yo. 

The annulus w&s carefully aligned to minimize effects associated with mis- 
alignment ; and the following specifications were obtained. The upper and lower 
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Hot wire sensor 
FIGURE 2. Hot-wire probe supports used in the experiments. The extended support 

allowed the sensor to be traversed to all radial positions. 

plates were normal to the rotation axis to within 1O"rad; and the rotation 
axis was within 10-3 rad of the vertical. The outer edges of the plates were 
concentric with the rotation axis to within 0.1 mm; and the plates were parallel 
to within 0.6mm, with the departure from flatness due to warping from 
machining. 

Access holes for hot-wire probes were placed a t  the following non-dimensional 
radii (outer radius = 1.000) and azimuthal positions: on the upper plate, 
$ = O", r = 0.333, 0.500; $ = 60°, r = 0.333, 0-500, 0.667, 0.833; r = 0.333, 
@ = ISO", 240'; on the lower plate, T = 0.278, @ = 50'; r = 0.333, @ = 60". 
An access hole at r = 0.580, qi = 150" could be used for an extended probe 
support capable of sweeping a velocity sensor to all radii. Disa hot-wire anem- 
ometry was used; figure 2 shows the typical construction of a hot-wire probe and 
support, along with a picture of the extended probe support. The prongs holding 
the sensing wire are about 7 mm long and 0.5 mm in diameter, while the body 
of the probe support is about 3 mm in diameter. By placing the hot-wire such 
that only the prongs were in the flow field, measurements in the interior 
(z = 7 mm > 6 - 2 to 3 mm) could be obtained without greatly disturbing the 
flow. A maximum of six sensors could be used a t  one time; and signals were 
transmitted by rotating mercury contacts. 

The analysis of the wave motions was done both on-line and in conjunction 
with a multi-channel tape recorder and an analog spectrum analyser. Both d.c. 
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and low-frequency amplifiers were available to amplify the anemometer output 
signals; and a pair of matched filters was used to isolate specific ranges of wave 
frequency. For on-line measurements, a pen recorder or oscilloscope was used, 
and frequencies were obtained by simple averages of the observed periods of 
oscillation. 

To study the rod-induced waves, a single rod, as long as the fluid was deep, 
was placed at  various radii (rod position rR = 0.320, 0.410, 0.574 and 0,738) 
and system parameters (volumetric flux S and rotation frequency Q) were 
adjusted so that there was an azimuthally propagating disturbance. The 
magnitude of the azimuthal perturbation velocity was measured at various 
positions relative to the disturbing rod; and phase measurements between 
various sensors were made. This was done by using the matched filters to isolate 
the fundamental wave frequency, and measuring the time lag between sensor 
signals with a chart recorder. The extended probe support could be used to 
measure the mean velocity in the wake of the disturbing rod, and mean velocity 
profiles for cases when no disturbing rod was present. Care had to be exercised 
to avoid disturbing effects associated with the extended probe support, and a 
discussion of the difficulties encountered can be found in Cerasoli (1974). A 
vertical traverser was available to change the length of the disturbing rod or to 
traverse a sensor and measure the axial structure of the disturbances associated 
with a disturbing rod. Again, care had to  be exercised to avoid disturbing effects 
due to the probe support. 

3. Experimental findings 
Mean velocity. Before discussing the rod-associated wave motions, a few 

remarks about the mean azimuthal velocity in the absence of a disturbing rod 
are in order. Extensive mean azimuthal velocity measurements were made, 
using the extended probe support for the interior flow region and the side-wall 
boundary layers. The results of these measurements are in fair agreement with 
theoretical predictions made by Hide (1968) and Bennetts & Hocking (1973). 
It was found that, for the parameter range investigated S II 1000-2200 c3 s-l, 
i2 II 3-6 red s-l, the relative circulation I? = rV was approximately constant, 
and about 90-100 % of the theoretical value rth = S/2n& The extended probe 
support could give rise to azimuthally travelling disturbances, and this placed 
constraints on making measurements ; the data reported in Cerasoli (1974) were 
free of such disturbances. 

Wave characteristics. It was found that the frequency of the rod-associated 
disturbances was a function of the system Rossby number (8, = S/2nRg6i2, 
outer radius R,) and was independent of the disturbing rod diameter d for 
d = 1-6-4.8 mm. Figure 3 shows data taken for fixed !J and a disturbing rod 
placed at rR = 0.32. The linear relationship between wave frequency o and 
volumetric flux X (which is proportional to e8 for fixed Q) is evident, and each 
straight line corresponds to an azimuthal wavenumber of the disturbance. For 
a given flux, either rn = 2 or 3 could be obtained, depending on the manner 
in which the system parameters were realized. That is, at the onset of the 

36-2 
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m=3 

s (c8 s-1) 

FIUURE 3. Disturbance frequency as a function of flux for fixed rotation rate and disturbing 
rod position 0.32, 19.6 cm. Disturbances with azimuthd wavenumbers rn = 2 and 3 were 
observed. = 4.30 rad s-l. 

Rod diameter (mm) 1.6 2.4 3-1 4.0 4.8 
+ n o o r  

disturbance, a mode with m = 2 was present, and a gradual increase in flux 
would retain the m = 2 mode. A great increase in flux could result in the m = 3 
mode, and subsequent gradual changes in flux would retain the m = 3 mode. 
It should be pointed out that, typically, only one distinct mode was present in 
the final state, although a period may exist where both modes are competing. 
Only in a few out of many experiments was it found that two distinct modes 
existed in the final state. 

The definition of an azimuthal wavenumber should be clarified. For a geometry 
with azimuthal symmetry, one can always decompose azimuthally travelling 
disturbances into modes given as exp [i(m$-wt)]. For such modes, m can be 
measured by placing two sensors at  the same radius and separated by an angular 
distance A$. Measurement of the time lag r between sensors is related to m by 

N ,  N = O ,  + I ,  + 2  ,.... 

The term [2n/A$]N arises from the inability to distinguish a phase shift 
A @ ( =  W T )  from Aart2niV. In an azimuthally symmetric geometry, m will 
always be an integer to satisfy periodicity. 

The present experimental situation does not possess azimuthal symmetry. 
The disturbances are associated with the wake downstream from the disturbing 
rod, and this wake decays with increasing azimuthal distance. It was found that, 
defining m by use of (3.1), integer values were always obtained (to within 
experimental error in measuring 7 ) .  The azimuthal wavenumber, as defined by 
(3.1), was also found to be independent of the position of the sensors with 
respect to the disturbing rod. 



Free shear layer instabilities 565 

A 4  
FIGURE 4. Azimuthal velocity of disturbance as a function of azimuthal distance from the 
disturbing rod (0). Rod position, 0-32. Sensor radius, 0 .33 .0 ,  estimate of restoring force 
SIP in the wake obtained from data shown in figure 8. =i 

The amplitude of the disturbance did depend on the azimuthal distance 
from the disturbing rod ; and figure 4 shows the azimuthal perturbation veloc- 
ity as a function of this distance. The system parameters for these data were 
Q = 4-30 rad s-1, S = 970 c3 s-1, o = 4.12 rad 5-1 and rR = 0.32. The mean 
velocity V near the sensors (T sensor = 0.333) was approximately 40 cm s-l 
and the maximum percentage peak-to-peak fluctuations vPp/ V were approxi- 
mately 20 yo. The amplitude of the disturbance was large as the flux of 970 c3 s-l 
was about 18 times the critical flux at  which the disturbance first appeared. 

The data obtained on wave magnitude and azimuthal wavenumber demon- 
strate that the disturbances take the form If(#)/ exp [i(mq5 - w t ) ] ,  where l f ( # ) l  
does not contribute to the phase of the disturbance. Green and Green & 
Mollo-Christensen also observed integer wavenumbers using (3.1) in a similar 
experiment, although their interpretation of the disturbances was different. 

Inspection of the data on frequency against Rossby number shows that, if an 
angular phase velocity is defined as dph = o/m, dph is equal to the mean angular 
velocity vR/YR near the radius a t  which the disturbing rod is placed. That is, 

where VR = V(rR).  Defining a non-dimensional wave frequency as @,d = w/Q, 
and using the theoretical expression for VR = #/27rrR8, one has 

o/m 2: VfiIrR, ( 3 4  

S 
2nr; 6Q ona 2: m- = meR or wnd = ,OmsR. 

eR = vB/(rRQ)  is a local Rossby number; /3 is approximately one. 
The validity of (3.4) can be seen in figure 5.  A single disturbing rod 3.2 mm 

in diameter was placed at one of the four radial positions rR = 032, 0.41, 0.57 
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FIGURE 5. Non-dimensional disturbance frequency o/Q as a function of local Rossby 
number S/2n~iGL;2. Rotation rates 2-87', 4-30 and 6-08 rad s-l. Disturbances with azimuthal 
wavenumbers m = 2-7 observed. 

Rod position 0.32 0.41 0.67 0.74 
n n +  o 

and 0.74; and three rotation rates were used, C2 = 2.87, 4.30 and 6.08 rad s-l. 
Inspection of the data shows that m = 2 and 3 modes could be obtained for 
rR = 0-32 and 0.41 ; m = 3 and 4 occurred for r ,  = 0-57; m = 5, 6 and 7 for 
r, = 0.74. Again, in the final state only one distinct mode was present in 
practically all the experiments. 

As stmated previously, the phase shift between two sensors at the same radius 
and separated by A$ was found to be A@ = mA4. For two sensors at  the 
same azimuthal position but at  different radii, the phase difference was as 
follows. For both sensors at  radii either less or greater than r,, the signals were 
in phase. For one sensor a t  r > rE and the other at  r < rR, the signals were 180' 
out of phase. 

The magnitude of v was uniform with axial position; this is to be expected, 
as the disturbing rod was as long as the annulus was deep. Some experiments 
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FIGURE 6. Wave spectra for azimuthal component of disturbance at various non-disturbing 
sensors for rod position rR = 0.41, #R = go", 8 = 1365 cs s-l, = 4-30 rad s-l, m = 2. 

(a)  ( b )  (c) (4 (el 
r 0.333 0.333 0.333 0.500 0.667 
# (deg) 180 0 60 60 60 

were done placing a disturbing rod halfway into the annulus. If the rod extended 
from z = 0 to BH, where H is the annulus depth, it  was found that the wave 
amplitude was approximately uniform for z = 0 to SH and diminished in the 
region from z = 4H to H .  The difference in amplitude between z = 0 and H was 
typically an order of magnitude. In  all cases, whether or not the rod extended 
throughout the annulus, no phase variations existed along the axial direction. 

Measurements were made with sensors at  the same azimuthal angle, and a t  
various radii. It was found that the wave amplitude was greatest in the vicinity 
of TR, and decayed with increasing distance from it. Thus, the data suggest that 
the rod-associated disturbances were azimuthally propagating waves with the 
greatest amplitude at  radii near rR, and about 60' downstream from the disturb- 
ing rod (see figure 4). When the rod was as long as the annulus was deep, the 
disturbances had no vertical structure. 

Figure 6 shows spectra for a typical disturbance. The rod was at  rR = 0.41 
and #E = 90'; the spectra at r = 0.333 are presented in the order of increasing 
azimuthal distance from g5R. The signals at T = 0.333, qi = 60" and r = 0-500, 
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FIGURE 7. similar to figure 6 ,  except that TR = 0.74, d~ = go", 8 = 3050 c3 s-l, rn = 6.  

(4 (b )  (c) (4 
r 0,333 0.500 0.667 0.833 
d (deg) 60 60 60 60 

q5 = 60" were 180" out of phase; those at r = 0.500, 4 = 60" and r = 0.667, 
q5 = 60" were in phase. The vertical scale is in units of (cm/s) Hz-l (v,,/Hz); 
and, as the typical width of a spectral peak is about 0-05 Hz, vpp can be esti- 
mated by multiplying the vertical scale by 0.05 Hz. The decrease in wave 
amplitude with increasing radial distance from rR can be seen; the change in 
vertical scale for r = 0.500 and 0.667 should be noted. The low-level signal at 
wnd = 1-0 for r = 0.500 and 0.667 is system noise at the rotation frequency. 
(It is not seen at r = 0.333, because of the high signal-to-noise ratio.) It 
amounted typically to less than 0-2 yo p.p. of the ambient velocity. Figure 7 
shows spectra for !rR = 0.74, #R = 90". The signals at  r = 0-667 and 0.833 were 
out of phase; those at  r = 0.600 and 0.667 were in phase. It should be noted that 
the sensors were at # = 60°, and were 30" upstream of the disturbing rod. 
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0.28 0.32 0.36 0.40 

FIGVRE 8. Circulation profiles in vicinity of r B  = 0-32 as a function of increasing azimuthal 
distance from disturbing rod. Intersection between two curves marks the radius at which 
wave phase velocity equals mean azimuthal velocity. --- , radius times wave phase 
velocity ( T % J / ~ ) .  

(a) ( b )  (4 (4 
A# (deg) 60 120 180 240 
8 0.18 0.11 0.10 0.07 

0.04 0.06 0-06 0.07 14 

4. Wake structure and measurement technique 
A number of the disturbance properties are similar to what is expected for a 

wake instability; the most obvious being the matching of wave phase velocity 
with mean velocity in the vicinity of rR. Measurements were made on the wake 
downstream from the disturbing rod, using the extended probe support. As 
this probe support can create a number of disturbance effects, a discussion of 
its use will follow the statement of experimental results. 

A disturbing rod, 3-2 mm in diameter, was placed a t  rR = 0.32 and four 
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distinct azimuthal positions such that, when the radial position of the extended 
support sensor rs was at 0.32, the azimuthal separations Aq5 between rR and 
rs were 60, 120, I80 and 240". S and Q were 970 c3 s-l and 4-30 rad s-l, respec- 
tively, and a disturbance with m = 2, and = 0.96 was present. Theextended 
support sensor was traversed into the wake, and mean velocities were measured. 
Figure 8 shows the circulation profiles at the four azimuthal separations, and 
the decay of the wake can be seen. The wake strength s (fractional decrease in 
circulation) and wake half-width Z* have been estimated from the profiles. The 
dashed curves are radius times the measured wave phase velocity, and are 
equal to r2w/m. The matching of wave phase velocity and mean velocity is 
represented by the intersection of rZw/m and I?@). 

The measurement of wake structure with the extended probe is subject to 
a number of criticisms concerning disturbing effects due to the extended probe 
support (Fultz & Kaiser 1971). To justify this set of measurements, a discussion 
of such disturbance effects will be presented. First, the use of the extended 
support in the absence of a disturbing rod will be considered. The extended 
support consists of a vertical section of rod at  r = 0.58, which extends halfway 
into the annulus, and a horizontal section approximately 26 cm long. Both 
sections of support will produce wakes, and can give rise to disturbances. A 
disturbance associated with the vertical section of the support will be similar to 
the wave motions discussed in this paper. Disturbances due to the wake of the 
horizontal section of the support are more complicated : an example will be given. 
For system parameters S = 2500 c3 s-l and R = 4-30 rad s-l, no disturbances 
were present with the extended support sensor near the outer radius rs 1: 1.0. 
The sensor was traversed radially inward to regions of higher azimuthal 
velocity and at  rs 1: 0.35 a disturbance was detected. As rs was decreased 
further, the frequency of the disturbance increased. Traversing the sensor 
back to rs 1: 0-35 caused the observed signal to decay. For S = 1500 c3 s-l, 
!2 = 4-30 rad s-l, no such disturbances were observed for any rs ;  and it is safe 
to say the wakes from both sections of the support were stable. 

For the situation when a disturbing rod and related disturbance were present, 
the extended support presented a number of other difficulties. Initially, the 
wake associated with a disturbing rod at r, = 0.41 was studied. System para- 
meters were adjusted so that a rod-associated disturbance with m = 2 was 
present and the extended support was not in the annulus. The extended probe 
was placed in the annulus with r, 1: 1-0; and repeating the experiment with the 
same parameters gave rise to the same m = 2 disturbance (as measured at  the 
non-disturbing probes). It was found that traversing the sensor into the wake, 
rs N rR, caused the m = 2 mode to decay, and a mode with m = 3 to appear. 
Traversing the sensor to rs =- r, would cause the m = 3 mode to decay, and the 
m = 2 mode to grow. This behaviour was repeatable, and it appears that 
interfering with the wake caused the most unstable mode to change from 
m = 2 to rn = 3. When the previous technique was applied to a disturbing rod 
at rE = 0-32 and a value of flux well above the critical ( -  18 times), a mode 
with m = 2 was retained independent of rs. Even for this case, disturbing effects 
due to the extended support were observed. For measurements at A$ = 60, 
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Ci (rad s-l) 
7 h 

rR 1-88 2.87 4-30 6.08 7.44 

0.32 0.60 0.45 0.36 0.25 0.21 
0-41 0.59 0.44 0.33 0.25 0-21 
0.57 0.53 0.39 0-30 0.23 0.19 
0.74 0.50 0.38 0.29 0.22 0.18 

TDLE 1. Critical Rossby number as a function of disturbing rod position and rotation 
rate for rod diameter of 3.2 mm 

120 and 180", a small decrease ( w 10 yo) in wave amplitude and frequency was 
observed at the non-disturbing sensors as the sensor was traversed into the wake. 
At Aq5 = 240°, the decrease in amplitude became substantial ( - 40 %), while 
the frequency still decreased by about 10 yo. 

The disturbing effects discussed for the data presented in figure 8 are not 
believed to invalidate that data. The estimated values of s and Z3 are not as 
accurate as one would want; but the data do show wake decay, and give one a 
handle on the wake parameters. 

5. Onset data 
The critical local Rossby number was measured for the onset of the rod- 

associated disturbances. The rotation rate was fixed, and the volumetric flux 
increased until a disturbance grew out of the noise, which was about 0-1-0.2 % 
p.p. of the ambient velocity. The critical Rossby number was defined as 
8, = f lC /2nr~6Q,  where S, was the volumetric flux at which disturbances were 
observed. Hysteresis effects similar to those reported by Ingram (1971) were 
observed; if S, were the flux for initiating a disturbance, one could go to 
S < S, and the wave would persist. Typically the disturbance would decay for 

Some onset data are presented in table 1 ; the disturbing rod was as long as 
the annulus was deep, and the rod diameter d was 3-2 mm. For fixed Q, ec 
depends weakly on rR, indicating that (VR)crit is approximately proportional 
to rR; for fixed TR) E ,  depends strongly on Q. Busse (1968) studied the stability 
of azimuthally symmetric shear flow in rotating co-ordinates, and found that 
the ratio eJE4 should be constant at onset ( E  = v/H2Q). Physically, this 
represents a balance between energy input to the disturbances from the mean 
shear and wave dissipation due to Ekman pumping. In the present experiment, 
the wake decays downstream from the rod and the ratio e,/E* need not be 
constant. This was found to be the case. 

The onset data are qualitatively consistent with the assumption that a 
circulation deficit or wake must extend completely around the annulus for 
disturbances to propagate. For fixed Q and d, (VR)cfit increased with increasing 
rR, and for fixed Q and rR, &)orit decreases as d increases, which is consistent 
with a wake deficit increasing as d increases. For fixed rR and d, (VR)cfit increases 

s N 0-90s,. 
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d (-1 % R ~ R  
1.6 0.45 40 No von K h h n  
2.4 0.39 vortices present 

Von K h m h  
vortices present 

3.2 0.35 
4.0 0.34 
4.8 0.32 

TABLE 2. Critical Rossby number as a function of disturbing rod diameter for r R  = 0.32 
and SZ = 4.30 rads-1. Reynolds numbers based on the theoretical velocity and rod 
diameter are also listed. 

with increasing s1, which is consistent with increased dissipation for both the 
wake and the wave motions as !J increases. 

Data for various rod diameters were obtained; and 8, as a function of d is 
listed in table 2. The onset mechanism is independent of the high-frequency von 
KArmkn vortex streets (typically 5-15Hz) that occur downstream from the 
rod for a rod Reynolds number VEd/v greater than about 50. Low-frequency 
disturbances occurred with and without vortex streets present ; and situations 
existed where vortex streets were present and no low-frequency disturbance 
was observed. It was found that the von Kkrmhn streets decayed substantially 
over distances of about 20-30 cm. 

A few remarks about onset are in order. First, the criteria used in these 
experiments required that the disturbances be above the ambient noise level. 
This meant that very low-level disturbances would go undetected, and the 
values obtained for e, are for finite-amplitude waves and overestimate the true 
critical Rossby number. At onset, usually two modes were present, giving 
rise to a highly modulated signal. There was a transient period while the two 
modes had nearly equal amplitudes; but eventually the mode with the lower 
m. would supersede the higher m mode. For a given rod position, the wave- 
numbers of the initial modes were the same with varying Q, and there was an 
interesting relationship between wave frequency o and rotation rate. This was 
that w/Q was always given by NIM, where N and M are integers. This feature 
was detected by simultaneously observing w and s2. 

The above statements can be clarified by considering onset data for rR = 0.32. 
Modes with m = 2 and 3 were observed initially; and the m = 2 mode became 
the final one. The non-dimensional frequencies at  onset were wnd = 8, 8 and + 
for s2 = 2.87, 4.30 and 6-08 rad s-l, respectively. The relationship between w 
and !J suggests that the disturbances are being forced in some manner by noise 
at the rotation frequency. Ratios of w/ !2  = 4, 1, 2 . . , might be explained by a 
simple parametric resonance process ; but ratios such as 8 or 8 would not occur 
in this. No explanation is presented for the phenomena; the experimental 
facts are stated for completeness. 

A transient period was also observed by Ingram in similar experiments: he 
states that spectra were not taken until 15 min after changing system para- 
meters. In  the present experiment, the transient period could last for as long as 
5min. Ingram presented a large amount of spectral data, but no absolute 
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magnitude information ; and this makes comparison with the present experi- 
ment difficult. Inspection of Ingram's spectra for a very low eR (most probably 
near onset, although no data are presented concerning onset) show that 0,d is 
also of the form N / H .  

The onset data presented to this point had the disturbing-rod length L 
equal to the plate separation H. It was found that the critical Rossby number 
was very sensitive to L ;  and the following behaviour was observed. For E N E ,  

and L = H ,  a small decrease in L ( N 6 mm or N 28) caused the disturbance to 
decay (as observed at  the non-disturbing sensors). When E was increased the 
disturbance would persist for smaller values of L. This is obvious, as the amount 
of shear in the flow field decreases as L decreases; but it is relevant to a com- 
parison of the present work with the work of Tatro & Mollo-Christensen and 
Tatro. If the disturbing rod were a hot-wire probe support and E N ec, traversing 
the sensor upward would cause the disturbance to decay, and could be inter- 
preted as an Ekman instability confined to the boundary layer. Similarly, for 
E > ec, the persistence of the disturbance as the sensor was traversed out of the 
boundary layer could be interpreted as inertial waves propagating into the 
interior. 

6. The wake instability in cylindrical geometry 
The linearized, inviscid equations for two-dimensional disturbances in 

rotating co-ordinates were studied to gain some insight into the nature of the 
rod-associated disturbances. The mean velocity V relative to the rotating co- 
ordinates was azimuthal and axisymmetric, and the non-dimensional equations 
in cylindrical co-ordinates are 

- i(o - emV/r) 21 - 2(1+ eV/r)  w = -p', (6.1) 
-i(w--emV/r)'u+2(1 +~(rV) ' /2 r )w  = -imp/r, (6.2) 

(ru)'+imv = 0. (6.3) 
The perturbation is of the form f ( r )  exp [i(m$ - wt) ]  ; and u, 'u and p are the 
perturbation radial velocity, azimuthal velocity and pressure, respectively. 
Lengths have been scaled by R,, time by Q-l and velocity by ER,Q; primes 
denote differentiation with respect to radius. Combining (6.1)-(6.3), one obtains 

= ru, and I' = rV is the circulation relative to the rotating co-ordinates. 
Equation (6.4) is similar to the one derived by Busse (1968), although his 
analysis allowed for variable depth and dissipation due to Ekman pumping. 
The dissipation can be included by replacing eml?/r2 by emr/r2 - 2iEfr; and it is 
equivalent to damping given by exp [ - 2 E h ] .  In this paper, the inviscid 
equation (6.4) will be studied; and 2E* will be used to estimate dissipation due 
to Ekman pumping. It should be noted that the rotation of co-ordinates Q 
appears in (6.4) only in defining E :  this is a consequence of dealing with two- 
dimensional disturbances. 
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FIGURE 9. Growth rate as a function of azimuthal mavenumber for azimuthally symmetric 
wakes of fixed strength 6 = 0.20, position rR = 0.32 and varying half-widths 14. 

Equation (6.4) is similar to the well-known Rayleigh stability equation for 
plane parallel flow, and the term (r’lr)’ plays the role of U“ in the Rayleigh 
problem. It can easily be shown that 

RI and R, are the inner and outer radii. Por unstable modes, (r’ lr)‘  must change 
sign, and the relative circulation must possess an inflexion point. 

The relative circulation for a rotating source-sink annulus has no radial 
inflexion points when disturbing rods are not present, and the flow field is 
stable to this class of two-dimensional disturbances. The situation is different 
when a disturbing rod, or probe support, is introduced. The circulation profile 
in the wake of the rod possesses radial inflexion points, and can be unstable. 

The eigenvalue problem of (6.4) was solved using the ‘shooting method’. 
(See Fox 1959.) A numerical grid of 1000 points between R, = 0.188 and 
R, = 1.000 was used; and the boundary conditions were = 0 at r = RI, R,. 
The circulation profile was taken to be 

r(r) = 1 -s[sech K(r - rR)I2. (6.6) 
s is the strength of the wake ; K is related to t,he half-width I4 by 

Far from the wake, the circulation was constant, and vertical side-wall boundary 
layers were not included for the mean velocity. Some calculations were done 
including side-wall layers : the results did not change significantly for the values 
of r, considered. 

Figure 9 is a plot of calculated growth rate wi against azimuthal wavenumber 
for fixed wake position rR, strength s and varying half-width I$. The real part 

K = 1.76114. 
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FIGURE 10. Similar to figure 9, except that s = 0.10 and I )  = 0.06. 
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of w is always approximately smV,lr, = meR, which corresponds to a matching 
of phase velocity with mean velocity in the vicinity of the wake. The most 
unstable wavenumber decreased for increasing l g ;  the growth rate of that mode 
decreased due to the decreasing shear in the wake. The relevant result is that, 
for a broad wake (Zh = 0.06), low-wavenumber modes (rn = 2, 3) are the most 
unstable. The results for a 'thin' wake (Z+/rR I), where curvature effects are 
small, are similar to those for the plane parallel flow problem. (See Betchov & 
Criminale 1967, p. 39.) Figure 10 shows the effect of placing an axisymmetric 
wake at various radii; for increasing r,, higher values of the most unstable 
wavenumber are obtained. This is consistent with experimental results, observ- 
ing higher values of m for increasing rR. 

The unstable modes found in this computation are analogous to the symmetric 
modes of the plane parallel flow problem (Betchov & Criminale loc. cit.) : figure 
11 shows perturbation velocities for a typical wake instability. The phase shift 
across the wake of approximately 190" for v compares favourably with the 
experimentally observed value of 180". 

The wake produced by the disturbing rod is not axisymmetric, as shown in 
figure 8. To gain some understanding of a the effect of decaying wake, curves 
representing oi against m were computed for axisymmetric wakes with the 
experimental wake parameters of figure 8. These results are shown in figure 12 ; 
a dissipation frequency has been estimated by 2E$(Q == 4-30 rad 9-1). During 
the experiments on wake structure, a mode with m = 2 and wnd = 0.96 was 
present. It is interesting that, for an axisymmetric wake with the parameters 
for wakes at Aq5 = 120 and 180°, m = 2 is the most unstable mode. 

The results of the preceding calculation have a number of features in 
common with the experimental findings. These are as follows. (i) The wave 
phase velocity matches with the mean velocity in the vicinity of the wake. 
(ii) For fixed wake parameters and increasing rR, the azimuthal wavenumber 
of the most unstable mode increases. (iii) The computed phase shift for v across 
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FIUVRE 11. Magnitude and phase of radial and azimuthal perturbation velocities for a 
typical unstable mode. The complex phase velocity c = mo (=  1.153, 0.153) has been 
normalized by the mean velocity at the disturbing rod radius. r R  = 0.41, s = 0.10, 
It = 0.06, m = 2 .  ---, ru; - , 0. 
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FIUURE 12. Growth rate as a function of azimuthal wavenumber for VR = 0.32 and wave 
parameters taken from the data presented in figure 8. 
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the wake agrees well with the measured values. (iv) The most unstable mode 
for an axisymmetric wake, with parameters determined in the slowly decaying 
region (A@ = 120-180”), agrees with the observed mode. 

The observation that in nearly all the experiments a single mode (azimuthal 
wavenumber) was present, not a distribution of wavenumbers, suggests that the 
wake instability was forced. Inspection of a typical calculated curve of growth 
rate against m (see figure 10) shows that one might expect a single mode to be 
present for small rR (=  0.32), but certainly not for large rR (=  0.74), where 
the curve is broad and relatively flat in the vicinity of the most unstable wave- 
number. The source of the forcing is believed to be noise at  the rotation fre- 
quency. Although care was taken to align the annulus and use high-quality 
bearings, a small signal at the rotation frequency could always be detected; 
such a signal was consistent with small fluctuations of the rotation rate ( - 0.05 % 
p.p. of Q). It is believed that this ‘Q’ noise forced the wake instability in some 
unspecified, nonlinear fashion, as mentioned in the discussion of onset data. 
This would also be consistent with the fact that wave frequencies were always 
the same order of magnitude as the rotation frequency. Another observation 
consistent with forcing is that one case where two modes were observed in the 
final state was for r R  = 0.32 with m = 2, wnd = 3 and m = 3, w,d = 1.00. It 
should be noted that, although not discussed by other workers (Caldwell & 
Van Atta 1970; Ingram 1971), energy near the rotation frequency can be seen 
in the spectra presented by them. 

The azimuthal dependence of the perturbation velocity can be explained in 
terms of the ‘restoring force’ (l?’/r)’. As the wake decays with increasing azi- 
muthal distance from the disturbing rod, ( I ” / r ) ’  decreases, and its magnitude 
can be estimated as s/$. This quantity has been plotted in figure 4, and a 
similarity in both vPp and t?/Z: as a function of azimuthal angle can be seen. 

7. Comparison with previous experiments 
The interior wave motions reported by Green (1968), Green & Mollo-Christen- 

sen (1970) and Ingram (1971) have properties very similar to the rod-associated 
waves observed here: figure 13 shows data taken from that literature. In  these 
experiments, a hot-wire sensor was placed at  the mid-depth in the annulus, which 
resulted in a disturbing rod extending half-way through the annulus. The 
non-dimensional frequency is plotted against the system Rossby number 

(ER = %?/&); 

and, if one assumes that the waves were rod-induced, p and m for Green, and 
Ingram’s data are consistent with data obtained in the present experiment. 

The linear relationship between wave frequency and Rossby number observed 
in the data is one that extrapolates to w = 0 with Rossby number. Such 
behaviour is consistent with rod-associated waves, since the velocity at the rod 
goes to zero as eR + 0. Inertial-wave frequencies would not extrapolate to zero 
as eR -+ 0, because the Coriolis restoring force does not vanish. Although Green 
and Ingram interpreted the interior waves as inertial modes, no measurements 

37 FLM 72 
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FIGURE 13. Non-dimensional frequency as a function of system Rossby number from ( + ) 
Green & Mollo-Christensen (1970) and (all other data) Ingram (1971).  
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on vertical wave structure were presented. Inertial modes in a closed annulus 
have v proportional to cos(Nnz/H), where N = 1, 2, ..., and nodal points 
should be observable for true inertial modes. 

The present study showed that probe supports can produce low-wavenumber, 
azimuthally propagating disturbances, and the wave motions, interpreted by 
Green and Ingram as inertial modes, were most likely rod-associated waves. 
Tatro & Mollo-Christensen (1967) used an annulus similar to that used in the 
present experiment ; and it is likely that they, too, observed rod-induced waves. 
Data were taken in two ways in their experiment. A probe support extended 
from the upper plate, through the annulus into the Ekman layer near the lower 
plate. Thus, a disturbing rod was in the flow field. The other method employed 
non-disturbing probes, which extended either 3 or 6 mm from the boundary. 
One might assume that no disturbing rod was in the system during such experi- 
ments; but this was not the case. As reported in Tatro (1966), a 1 mm diameter 
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FIGURE 14. Critical Reynolds number Re, = L“/27~9v as a function of Rosaby number 
E = S,/Zm~SQ for (a )  disturbances labelled type-I1 Ekman instabilities, from Tatro (1966), 
and ( b )  rod-associated disturbances. Rod diameter, 3.18 mm. 

rod was placed at a small radius “ to  stimulate the instability ”. Tatro justified 
use of this by observing that wave frequencies were independent of rod 
diameter (d- 1-4 mm). This is precisely the behaviour observed for the rod- 
induced waves in the present experiment. 

One of the better ways to distinguish Ekman instabilities from rod-associated 
waves is to have data on wave frequency against Rossby number. Unfortunately, 
Tatro & Mollo-Christensen and Tatro give no such data explicitly; and one must 
look to other data for comparison. Figure 14(a) is a plot of critical Reynolds 
number against local Rossby number from Tatro. The wave motion was 
interpreted as a type-I1 instability ; and Re and 6 are based on theoretical values 
for velocity and Ekman thickness S = (v/!2)4. Tatro found that, defining Re 
and E using measured values of velocity and Ekman thickness, the three curves 
of figure 14 would collapse into a single curve, 

Re = 56-3 + 116.86,. (7.1) 

eL = Vm/2rQ and Re = VmcTmm/v; and subscripts m denote measured values. 
Equation (7.1) has been criticized by Green & Mollo-Christensen, because 

of the manner in which boundary-layer thicknesses were obtained. The thick- 
nesses were based on the height at which the voltage for a hot wire aligned 
parallel to the azimuthal velocity was a maximum. Such an orientation would 
have the hot wire sensitive to the radial component of the velocity U ,  and a 
correct measure of the position z at which U is a maximum is related to S by 
6 = 4z/n for an Ekman profile. Green & Mollo-Christensen, using similar 
equipment, found that thicknesses obtained in this manner were artifacts of the 
hot-wire response to the vertical gradient of the azimuthal velocity and the 

37-2 
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change in the mode of heat transfer near the boundary. For the data presented 
by Tatro to collapse onto a single curve, 8, must increase with decreasing radius 
(no am’s are explicitly given by Tatro). Both Green (1968) and Caldwell & Van 
Atta found no radial dependence of 8,. Finally, theoretical arguments by Faller 
& Kaylor ( 1 9 6 6 ~ )  suggest an explanation of the dependence of the critical 
Reynolds number upon local Rossby number which does not predict a linear 
relationship between the two. 

The preceding remarks lead one to rely only on the data presented in figure 
14(a); and such behaviour is not expected for the type-I1 instability. Figure 
14(b) shows data obtained in the present experiment for the onset of the rod- 
associated disturbances. A 3-2 mm rod was placed at four radii, and critical Re 
and e were defined, based on theoretical velocities and Ekman thicknesses. 
These data bear a close resemblance to Tatro’s, although the precise values of 
Re and e do not agree. The critical Reynolds numbers obtained by Tatro are 
typically greater than those observed in the present experiment : this is believed 
to be due to a t  least two factors. First, the probe support used by Tatro had a 
diameter of 2.5 mm, as compared t o  the 3-18 mm rod used for the data shown 
in figure 14(b) .  As discussed in $5, the critical Reynolds number for rod- 
associated waves increases with decreasing rod diameter. Second, the construc- 
tion of the hot-wire probes used by Tatro consisted of a 2-5 mm diameter rod 
with fine needles approximately 5 mm long holding the hot-wire sensor. When 
the sensor was placed in the boundary layer, the length of the disturbing rod in 
the flow field was the annulus depth minus approximately 5 mm. The present 
data were obtained with a disturbing-rod length equal to the annulus depth; 
and, as discussed in 5 5, the critical Reynolds number for rod-associated waves 
increases with decreasing rod length. Finally, the onset criterion used by Tatro 
is not given. In  the present experiment, disturbances with amplitudes less than 
4 yo p.p. of ambient velocity (typically less than 0-15 cm s-l) were detected. If 
the detection of disturbances by Tatro required ampIitudes greater than were 
required in the present experiment, critical Reynolds numbers would also be 
greater. Tatro observed no disturbances below Re rz 55, which is the theoretically 
predicted critical Reynolds number for type-I1 instabilities. If the disturbances 
observed by Tatro were rod-associated waves, the factors discussed could have 
been responsible for none being observed below Re 11 55. The point is the simi- 
larity between the data shown in figures 14 (a),  (b )  and the fact that the different 
curves of Re against E in figure 14(a) for different radii are neither the predicted 
behaviour for type-I1 waves, nor the observed (Faller & Kaylor 1966b; Caldwell 
& Van Atta 1970). 

Tatro & Mollo-Christensen reported observing Ekman instabilities confined 
to the boundary layer for fluxes near the critical value, and wave motions 
propagating into the interior for fluxes exceeding the critical value. This 
behaviour can be seen in figure 15 from Tatro; the data were taken by placing 
a hot wire in the Ekman layer from above, and slowly traversing (0.127 mms-1) 
the sensor upward. The apparent confinement of the disturbance to the bound- 
ary layer for fluxes near critical value was taken as evidence that Ekman 
instabilities were being observed. As discussed in the section on onset data, the 
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FIGURE 15. Hot-wire voltage as a function of vertical position of sensor for various values 
of flux, from Tatro (1966). !2 = 4.0 red s-l, T = 25.4 om. 
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rod-associated waves depend strongly on rod length, especially when fluxes are 
near their critical value. The behaviour shown in figure 15 is similar to that 
observed in the present experiment, with the rod-induced waves persisting for 
shorter rod lengths as the flux is increased beyond the critical value. It should 
be noted that the oscillations of figure 15 do not imply vertical wave structure. 
The pattern is one which would be obtained by slowly traversing a sensor in a 
wave field which is uniform with height. The frequency of the disturbance is 
related to the pattern of figure 15 by 

frequency = (number of waves mm-l) x (0.127 mm s-l). 

Using this relationship one obtains frequencies of order 1 Hz (also of the order of 
the rotation frequency) ; and this is consistent with other frequency data given 
by Tatro. 

The frequency of the disturbances observed by Tatro & Mollo-Christensen 
was typically of the order of the rotation frequency. Such frequencies are an order 
of magnitude smaller than what is expected for a type-I1 instability, and are more 
consistent with frequencies observed for rod-induced waves. Tatro did not 
explicitly present data on frequency against Rossby (or Reynolds) number; 
but Tatro (1966, figure 3.3) does show chart recordings of hot-wire output for 
increasing Reynolds number Re = 50-90; and frequencies as a function of 
Reynolds number can be estimated from this. When that is done, one finds a 
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linear relationship between frequency and Reynolds number, which extra- 
polates to zero frequency for Re = 0 (to within the limitations of measuring 
frequencies from this figure). This linear relationship between frequency and 
Reynolds (or Rossby) number is characteristic of rod-induced waves, and not 
of type-I1 instabilities. 

Tatro used a pair of non-disturbing hot-wire sensors to make phase measure- 
ments of the observed disturbances ; and it was reported that the wave fronts of 
the type-I1 waves were aligned approximately parallel to the azimuthal direc- 
tion. At  first sight, this behaviour is not what is expected for the rod-induced 
waves. Their azimuthal perturbation velocity has no radial phase variations 
far from the disturbing rod. The waves propagate azimuthally; and wave fronts 
are aligned perpendicular to the azimuthal direction. The situation is different 
for measurements made near the disturbing rod, or more to the point, near the 
‘matched’ layer where V / r  = mu. A large phase shift in the radial direction 
( N  180°, see figure 11) occurs in this region and phase measurements can yield 
an apparent wave-front orientation parallel to the azimuthal direction. This 
apparent wave-front orientation will depend on wave structure, azimuthal wave- 
number and the position of the sensors relative to the disturbing rod. A disturb- 
ing rod was used by Tatro to ‘stimulate’ the instability; but the relative 
position of the rod and sensors was not given. It is reasonable to assume 
proximity between sensors and rod, as the purpose of the rod was to increase 
the ambient turbulence level in the vicinity of the sensors. Such a situation 
could easily result in phase measurements interpreted as wave fronts aligned 
approximately parallel to the azimuthal direction. 

A comparison between the data reported by Tatro and that obtained in the 
present study leads this author to conclude that the disturbances interpreted as 
type-I1 instabilities and inertial waves were rod-associated. The points of 
agreement between the two sets of data are as follows. (i) Frequencies were of 
the order of the rotation frequency ; and this is lower than predicted for type-I1 
waves. (ii) There is a linear relationship between frequency and Reynolds 
number (as estimated from Tatro, figure 3*3), which extrapolates to zero 
frequency for Re = 0. (iii) Disturbances were observed well outside the Ekman 
boundary layer. (iv) The critical Reynolds number against Rossby number data 
for different radii (see figures 14 (a) ,  ( b ) )  are more consistent with rod associated 
waves than type-I1 instabilities. The fact that Tatro observed no disturbances 
below Re N 55, and the apparent alignment of wave fronts parallel to the 
azimuthal direction, can be explained in terms of rod-associated waves; the 
rest of Tatro’s data cannot be reconciled with the characteristics of type-I1 
instabilities. 

Tatro & Mollo-Christensen reported observing a disturbance with properties 
similar to the type-I wave. It occurred at Re of approximately 125, and depended 
very weakly on Rossby number. The disturbance was confined to the boundary 
layer as measured with the non-disturbing probes. That is, the type 1-wave was 
observed at  sensors 3 mm from the wall, and not at sensors 6 mm from the 
boundary (Tatro 1966). From wave forms presented by Tatro, i t  appears that 
the type-I wave was subharmonically forced by the rod-associated wave. For 
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Re just less than the critical value for type-I waves, a ‘high’ frequency signal 
is shown; for Re just past critical for type-I waves, a wave of frequency one- 
half the previous value is present. The low-frequency mode is that confined to 
the boundary layer. 

Caldwell & Van Atta reported observing a disturbance with properties 
similar to those predicted for the type-I1 instability. The frequencies were 
typically an order of magnitude greater than the rotation frequency; and data on 
vertical structure of the disturbance and frequency dependence on Reynolds 
number are all consistent with Ekman waves, and not rod-induced waves. The 
reason Caldwell & Van Atta were not plagued by rod-associated waves is 
believed to  be related to the size of the annulus used. Tatro used a small 
annulus (R, = 45.7 em) and a typical observation radius was around 30 em. 
Caldwell & Van Atta used a large one (R, = 200 om), and a typical observation 
radius was about 90 em. For rR = 90 em, there is sufficient distance for the 
wake to decay fully downstream of the probe support. With the wake decayed, 
no restoring force exists, and rod waves cannot propagate 360’ around the tank 
to reinforce themselves. 

To complete the comparison with previous experiments, the attempt to 
observe Ekman instabilities will be discussed. Hot-wire sensors were placed at 
r = 0.333 and 0.500 and were 2 mm from the boundary. The rotation rate was 
Sl = 4.30 rad 5-1 (8 = 1-89 mm), and the flux was varied up to approximately 
3400 c3 s-l. This resulted in a maximum local Reynolds number of approxi- 
mately 170 and 115 at T = 0.333 and 0-500, respectively. The anemometer 
outputs were observed using band-pass filters, and were also recorded and sub- 
sequently spectrum analysed. For both techniques, no signals were observed 
that could be interpreted as Ekman-layer instabilities. Spectral analysis 
showed a peak at the rotation frequency which represented system noise and 
amounted to less than 0.1 yo of the ambient velocity. Spectral peaks at frequen- 
cies greater than Q were also observed with amplitudes an order of magnitude 
smaller than the ‘a’ peak. The amplitude and frequency of these peaks were 
independent of local Reynolds number, and were also interpreted as system 
noise. Sources of this noise were believed to be associated with the rollers in the 
bearings and vibrations of the frame that supported the annulus. 

The failure to observe Ekman instabilities in the present work does not 
contradict previous numerical and laboratory experiments. The type-I dis- 
turbances are either stationary or slowly moving, and if they were stationary, 
fixed sensors would not detect them. The type-I1 waves are rapidly moving 
disturbances with small growth rates. Using the theoretical results obtained 
by either Lilly or Faller & Kaylor (19666), one can show that disturbances 
which begin to grow at large radii will have amplified a small amount (typically 
less than e+l) by the time they reach the sensors at small radii. If the ambient 
turbulence level is very low, disturbances will not grow to detectable levels. 

The ambient turbulence levels in the present experiment were believed to 
have been very low because of the very uniform inlet conditions a t  the source 
region. The source consisted of reticulated polyurethane foam approximately 
8 cm thick with pores uniformly spaced at  20 om-’. No wave motions were 
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observed near the source for fluxes less than approximately 4000 c3 s-l; and 
mean azimuthal velocity measurements, for fluxes less than about 2200 c3 s-l, 
agreed well with theoretical predictions. These data support the conclusion 
that no unstable waves associated with the source region were present. 

The very uniform and ‘ quiet ’ inlet conditions of the present experiment 
must be compared with the inlet conditions in the experiments of Faller and 
Caldwell & Van Atta. In  Faller’s experiment the incoming fluid entered through 
a thin slit (2 cm), and one can expect jetting of the fluid and higher turbulence 
levels than in the present experiment. The precise design of the source region 
for the annulus used by Caldwell & Van Atta is unclear; but in their experiments 
wave motions near the source were observed. These were believed to be Centri- 
fugal instabilities ; and similar disturbances could be produced with the present 
apparatus under appropriate conditions. (For i-2 = 4.30 rad s-l, S > 4000 c3 s-l 
would give rise to disturbances near the source.) These instabilities would 
certainly result in higher ambient turbulence levels than in the present experi- 
ment, where no such instabilities were present. 

The theoretical work on Ekman-layer stability by Lilly and Faller & Kaylor 
(1966 b )  has been qualitatively verified by the laboratory experiments of Faller, 
Faller & Kaylor (1966a) and Caldwell & Van Atta. A rigorous quantitative 
verification of the theory remains to be carried out, and would require an 
apparatus with very low ambient turbulence levels. The disturbances could 
be selectively excited, as done by Schubauer & Skramstad (1948), to confirm 
the theory of Tollmien-Schlichting waves. The author regrets that time did 
not allow such a programme to be carried out, although curvature effects due to 
the annulus size would have complicated any results obtained with the present 
apparatus. 

8. Conclusion 
It has been demonstrated that hot-wire probe supports can give rise to 

azimuthally propagating disturbances in rotating annulus experiments. The 
disturbances are associated with the wake downstream of the probe support or 
disturbing rod. This wake decays with increasing distance from the rod, and 
gives rise to a non-azimuthally symmetric situation. Despite that lack of 
symmetry, the disturbances possess integer azimuthal wavenumbers, which 
range from m = 2 to 7, depending on the position of the disturbing rod. An 
inviscid model for an azimuthally symmetric wake in cylindrical geometry has 
a number of features which agree with experiment when wake parameters 
representative of the wake in the slowly decaying region ( - 40-80 cm down- 
stream from rod) are used in the model. 

Data presented on the onset of the disturbances are qualitatively consistent 
with the assumption that a circulation deficit, or wake, must extend around 
the annulus for the disturbances to propagate, although no quantitative 
relationship was found. The onset data show that decreasing the probe-support 
size increases the critical Rossby number for initiating disturbances ; but 
disturbances can still arise for probes of the smallest practical size ( N 1 mm 
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diameter) in the present experiment. The data do indicate that a large annulus 
(observation radius - 100 cm), with small probe supports, will eliminate these 
disturbances, since there will be sufficient distance for the circulation deficit to 
decay. 

These disturbances can be particularly troublesome in small annulus (annulus 
radius w 60 em) experiments as they can occur near system parameters where 
other types of instabilities (such as Ekman-layer instabilities) occur. Comparison 
of present results with those of Tatro & Mollo-Christensen (1967) supports the 
conclusion that the wave motions interpreted as type-I1 Ekman instabilities 
and inertial eigenmodes were actually probe-associated disturbances. The 
same conclusion is reached about the wave motions believed to be inertial 
modes by Tatro (1966), Green (1968) and Ingram (1971). Therefore, at 
present, there is no laboratory evidence for the existence of a mechanism 
whereby Ekman-layer instabilities resonate with inertial eigenmodes, although 
Kaylor & Faller (1972) showed that a similar mechanism exists for internal 
waves in numerical experiments. The data on boundary-layer waves presented 
by Caldwell & Van Atta (1970) do not have characteristics similar to probe- 
associated disturbances ; and it appears that true Ekman-layer instabilities 
were observed. 
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